PIPELINE RISK ASSESSMENT
The Definitive Approach and Its Role in Risk Management

W. Kent Muhlbauer
PIPELINE RISK ASSESSMENT
The Definitive Approach and Its Role in Risk Management
PIPELINE RISK ASSESSMENT
The Definitive Approach and Its Role in Risk Management

W. Kent Muhlbauer
4 DATA MANAGEMENT AND ANALYSES 117
4.1 Multiple Uses of Same Information 118
4.2 Surveys/maps/records 119
4.3 Information degradation 119
4.4 Terminology 120
 4.4.1 Data preparation 125
 4.4.2 Events Table(s) 126
4.4.3 Look Up Tables (LUT) 126
4.4.4 Point events and continuous data 127
4.4.5 Data quality/uncertainty 127
4.5 Segmentation 128
 4.5.1 Segmentation Strategies 128
 4.5.2 Eliminating unnecessary segments 131
 4.5.3 Auditing Support 131
 4.5.4 Segmentation of Facilities 132
 4.5.5 Segmentation for
 Service Interruption Risk Assessment 132
 4.5.6 Sectioning/Segmentation
 of Distribution Systems 132
 4.5.7 Persistence of segments 133
4.6 Results roll-ups 133
4.7 Length Influences on Risk 135
4.8 Assigning defaults 136
 4.8.1 Quality assurance and
 quality control 138
4.9 Data analysis 138

5 THIRD-PARTY DAMAGE 139
5.1 Background 141
5.2 Assessing third-party damage potential 141
 5.2.1 Pairings of Specific Exposures with
 Mitigations 142
5.3 Exposure 143
 5.3.1 Area of Opportunity 144
 5.3.2 Estimating Exposure 145
 5.3.3 Excavation 146
 5.3.4 Impacts 147
 5.3.5 Station Activities 150
 5.3.6 Successive reactions 150
 5.3.7 Offshore Exposure 152
 5.3.8 Other Impacts 153
5.4 Mitigation 153
 5.4.1 Depth of Cover 154
 5.4.2 Impact Barriers 157
 5.4.3 Protection for aboveground facilities .. 159
 5.4.4 Line locating 159
 5.4.5 Signs, Markers, and Right-of-way
 condition 160
 5.4.6 Patrol 161
6 TIME-DEPENDENT FAILURE MECHANISMS 165
6.1 P0F and System deterioration rate 168
6.2 Measurements vs Estimates 168
6.3 Use of Evidence 169
6.4 Corrosion—General Discussion 169
6.4.1 Background 169
6.4.2 Assessing Corrosion Potential 169
6.4.3 Corrosion rate 170
6.4.4 Unmitigated Corrosion Rates 171
6.4.5 Types of corrosion 171
6.4.6 External Corrosion 172
6.4.7 Internal Corrosion 173
6.4.8 MIC 173
6.4.9 Erosion 173
6.4.10 Corrosion Mitigation 174
6.4.11 Corrosion Failure Resistance 174
6.4.12 Sequence of eval 175
6.5 External Corrosion 177
6.5.1 External Corrosion Exposure 177
6.5.2 External Corrosion Mitigation 183
6.5.3 Monitoring Frequency 194
6.5.4 Combined Mitigation Effectiveness 195
6.5.5 External Corrosion Resistance 196
6.6 Internal Corrosion 197
6.6.1 Background 197
6.6.2 Exposure 198
6.6.3 Mitigation 205
6.7 Erosion 210
6.8 Cracking 211
6.8.1 Background 212
6.8.2 Crack initiation, activation, propagation 213
6.8.3 Assessment Nuances 213
6.8.4 Exposure 214
6.8.5 Mitigation & Resistance 222

7 GEOHAZARDS 225
7.1 Failure Probability: Exposure, Mitigation, Resistance 228
7.1.1 Pairings of Specific Exposures with Mitigations 228
7.1.2 Spans and Loss of Support 228
7.1.3 Component Types 229
7.2 Exposures 229
7.2.1 Landslide 230
7.2.2 Soils (shrink, swell, subsidence, setting) 230
7.2.3 Aseismic faulting 231
7.2.4 Seismic 231
7.2.5 Tsunamis 232
7.2.6 Flooding 233
7.2.7 Scour and erosion 235
7.2.8 Sand movements 236
7.2.9 Weather 236
7.2.10 Fires 237
7.2.11 Other 237
7.2.12 US Natural Disaster Study 238
7.2.13 Offshore 240
7.2.14 Induced Vibration 243
7.2.15 Quantifying geohazard exposures 244
7.3 Mitigation 245
7.4 Resistance 247
7.4.1 Failure modes for buried pipelines subject to seismic loading 247

8 INCORRECT OPERATIONS 251
8.1 Human error potential 253
8.1.1 Human Error Potential Considered Elsewhere in Risk Assessment 253
8.1.2 Origination Locations 254
8.1.3 Continuous Exposure 255
8.1.4 Errors of omission and commission 256
8.2 Cost/Benefit Analyses 257
8.3 Assessing Human Error Potential 257
8.4 Design Phase Errors 257
8.5 Construction Phase Errors 258
8.6 Error Potential in Maintenance 259
8.7 Operational Errors 259
8.7.1 Exceeding Design Limits 260
I.1 ACRONYMS

ACVG AC (alternating current) Voltage Gradient
AGA American Gas Association
ANSI American National Standards Institute
API American Petroleum Institute
APWA American Public Works Association
ASME American Society of Mechanical Engineers
AST Above ground Storage Tank
CGA Common Ground Alliance
CIS Close Interval Survey
CLSM Controlled Low-Strength Material
CoF Consequence of Failure
CPM Computational Pipeline Monitoring
CP Cathodic Protection
CSA Canadian Standards Association
D/t Diameter to wall thickness ratio
DAMQAT Damage Prevention Quality Action Team
DCS Distributed Control Systems
DCVG DC (direct current) Voltage Gradient
DIN Deutsches Institut fur Normung (the German Institute for Standardization)
DIRT Damage Information Reporting Tool
DOT (U.S.) Department of Transportation
DSAW Double Submerged Arc Welding
Dt Ratio Diameter-to-Thickness Ratio
EAC Environmentally Assisted Corrosion
ECDA External Corrosion Direct Assessment
EE Essential Elements
EGIG European Gas Pipeline Incident Group
EL Expected Loss
ERW Electric Resistance Welding
EMAT Electromagnetic Acoustic Transducers
EPA Environmental Protection Agency
EPRG European Pipeline Research Group
ERCB Energy Resources Conservation Board (formerly Alberta Energy and Utilities)
ERW Electric Resistance Weld
ESR Epoxy Sleeve Repair
ERF Estimated Repair Factor
EUB Alberta Energy and Utility Board
FBE Fusion Bonded Epoxy
FFS Fitness For Service
FEA Finite Element Analysis
FMEA Failure Modes and Effects Analysis
FRC Fiber-Reinforced Concrete
GIS Geographic Information System
GMAW Gas Metal Arc Welding
GPR Ground-Penetrating Radar
GPS Global Positioning System
GRI Gas Research Institute
GTAW Gas Tungsten Arc Welding
HAZ Heat Affected Zone
HAZOPS Hazard and Operability Study
HCA High-Consequence Area
HDPE High Density Polyethylene
HF High Frequency
HIC Hydrogen Induced Cracking
HSE Health and Safety Executive (UK)
HUD Housing and Urban Development
HVA High value area
ICS Industrial Control System
ILI In-Line Inspection
IPL Independent Protection Layers
Km Kilometer
LDPE Low Density Polyethylene
Limit states ‘ultimate’ (ULS), ‘leakage’ (LLS), and ‘serviceability’ (SLS)
LOPA Level Of Protection Analysis
LUT Look Up Table
MAOP Maximum Allowable Operating Pressure
MAWP Maximum Allowable Working Pressure
MFL Magnetic Flux Leakage
mi Mile
MOP maximum operating pressure
MPI Magnetic Particle Inspection
MPY mils per year
NAPSR National Association of Pipeline Safety Representatives
NDE Non-Destructive Examination
NDT Non-Destructive Testing
NEB National Energy Board (Canada)
NOP Normal Operating Pressure
NPS Nominal Pipe Size
NRA Nuclear Regulatory Agency
NTSB National Transportation Safety Board
OD Outer/Outside Diameter
OPS Office of Pipeline Safety
OSHA Occupational Safety and Health Administration
PCS Process Control System
PE Polyethylene
PGD Permanent Ground Deformation
PHA Process Hazard Analysis
PHMSEA Pipeline and Hazardous Materials Safety Administration
PIPS Pipeline Inspection, Protection, Enforcement, and Safety Act
PLC Programmable Logic Controller
PLRMM Pipeline Risk Management Manual, 3rd edition
PoD Probability of Damage
Pof Probability of Failure
PP Polypropylene
PPTS Pipeline Performance Tracking System
PRA Probabilistic Risk Assessment
PRCI Pipeline Research Council International, Inc.
PFD Probability of Failure on Demand
PL Protection Layer
PSA Petroleum Safety Authority (Norway)
psi Pounds Per Square Inch
PVC Poly Vinyl Chloride
PXX abbreviation for conservatism level: P50, P99.9, etc
QA/QC Quality Assurance/Quality Control
QRA Quantitative Risk Assessment
RBD Reliability Based Design
ROV Remotely Operated Vehicle
ROW Right Of Way
RPR Rupture Repair Ratio
SCADA Supervisory Control And Data Acquisition
SCC Stress Corrosion Cracking
SLOD Significant Likelihood Of Death
SIL Safety Integrity Layer
SME Subject Matter Expert
SMYS Specified Minimum Yield Strength
SSC Sulphide Stress Corrosion
TSB Transportation Safety Board of Canada
TTF Time To Failure
UAV Unmanned Airborne Vehicle
UKOPA UK Onshore Pipeline Operators Association
ULCC Utility Location and Coordinating Council
UST Underground Storage Tank
UT Ultrasonic Testing
UTS Ultimate Tensile Strength
Yr Year
CAUTION

This text describes an approach to comprehensive pipeline risk assessment. While the underlying methodology has been proven over years of practice, not every nuance of application is documented here. The user must understand that, as with all technical approaches, a qualified person must oversee its use and accepts sole responsibility for any and all results of applying methodologies described herein and their subsequent uses.
Formal risk management has become an essential part of pipelining. As an engineered structure placed in a constantly changing natural environment, a pipeline can be a complex thing. Good risk assessment is an investigation into that complexity; providing an approachable, understandable, manageable incorporation of the physical processes potentially acting on a pipeline: external forces, corrosion, cracking, human errors, material changes, etc.

Recent work in the field of pipeline risk assessment has resulted in the development of methodologies that overcome limitations of the previous techniques while also reducing the cost of the analyses. Alternative approaches simply no longer compete. This more-defensible, more-efficient, more-useful, i.e., definitive, approach is detailed here.

This text recommends the abandonment of some previous risk assessment methodologies. Our reasons for building and using certain older models are no longer valid. We no longer have to take short-cuts to work around computer processing limitations or to approximate underlying scientific/engineering principles. We don’t need extensive component failure histories to produce absolute estimates of risks, as once believed, nor do we have to use data that is so generalized that it does not fairly represent the specific assets being studied. We now have strong, reliable, and easily applied methods to estimate actual risks, and no longer must accept the compromises generated by intermediate scoring schemes or statistics-centric approaches.

A goal of this book is to provide an intuitive, transparent, and robust approach to help a reader put together an efficient risk assessment tool and, with that, optimize the management of pipeline risks.

Therefore, this book is also about risk management—not just risk assessment. Risk is a fuzzy topic, and managing risk involves numerous social and psychological issues. It is by no means a strictly technical endeavor. This book advocates a single, very efficient risk assessment methodology, developed and tuned over years of applications, as the starting point of risk management. The practice of risk assessment can now be fairly standardized.

However, it is a disservice to the reader to imply that there is only one correct risk management approach. Those embarking on a formal pipeline risk management process should realize that, once an improved risk understanding is obtained, they have many options with which to react to that risk. This should not be viewed as negative feature, in my opinion. The choices in technical, business, and social problem-solving surrounding risk management makes the process challenging and exciting.

So, my advice to the reader is simple: arm yourself with this ‘next generation’ knowledge of how to measure risk, adopt an investigative mind set—good risk management requires sleuthing!—and then, enjoy the journey!